If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-40x+13=0
a = 5; b = -40; c = +13;
Δ = b2-4ac
Δ = -402-4·5·13
Δ = 1340
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1340}=\sqrt{4*335}=\sqrt{4}*\sqrt{335}=2\sqrt{335}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-2\sqrt{335}}{2*5}=\frac{40-2\sqrt{335}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+2\sqrt{335}}{2*5}=\frac{40+2\sqrt{335}}{10} $
| 6r+2r=8r+4 | | -2(3x-7)+3=-6x+17 | | X+11=x-11 | | 1^3x-7=4^2-x | | 4x+20-5x+15=12x-10x+10 | | -8x-94=-3x-34 | | 2x+3x=4x+11 | | w^2+4w-54=0 | | 6a-2+4a-14=-a+7a | | 5/2x+6=1/4x | | 1.8-2x+6=3.8-8x+9+2x | | X+8/3x=-4/3+6 | | 2x+5x+11x-4=122 | | 3(3+5x=) | | 3-x+2(5-x)=4x-8 | | A=s×s | | (x+1)/x=7/5 | | –6(x-3)-10=32 | | 14/n=7 | | /x-5=-31 | | 3(2+1)=2x+11 | | 6(2-5x=) | | x2+5x=300 | | 4+1-3n+8=-5n-7-3n | | 12/2=x/7 | | 39.21=8g+3.53 | | X^-120x-2000=0 | | 33+5y-10=16y-13-2y | | 17+x=25 | | 2w+7w=36 | | x²-120x+2000=0 | | 22=-2b |